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ABSTRACT

A hybridmethodhas been developedto iterativelycoupleSN and Monte Carlo regions
of the 3ame problem. This techniqueavoidsmany of the restrlctlonaand limitations
cf previougattemptsto do the coupling and results in a general and relatively
efficientmethod. Me demonstratethe methodwith some simpleexamples.



I. INTRODUCTION

‘f:$ieS /lMonc+;arla hybrid method consists of defining spatial ,-egi3ns .3f 3
problem adVregi~ns xhere ei:her a !-lonte Darlo calculation or an S 2a12uiation 19 :.)

be done. The calculations are then connected through the comm% boundary fluxes.
Operationally, thfg connection or linkage is accomplls~.edthrough the use of
response matrices in the Monte Carlo reg~ons. These responsematricesgive the
angularfluxof particlesleavingthe MonteCarloregionsdue to the angularfluxaf
particles entering the Monte Carloregions. The responsematricesare calculated
usingMonteCarloand are gtored to be used in a ~oundary flux iteration. The
boundary sources into the !lonteCarloreglansare computedin the SN regio~sand,
thus,are accurateonly when the solutionon the boundary out of the Monte Carlo
regionsis know. The bourldaryfluxesmust, therefore,be iterated between the MOrlte

Carloand SN regions.

To facilitate the linkagebetweenthe SN and YonteCarlopartsof the calcula-
tion,all interfacefluxesare definedon the SN numerical grid. Therefore, the
responseoperatorfor the l’thMonteCarloregion1s a K IK

AA
matrix,whereK is the

number(spatialtimesangular)of S~ statesused to repr se t the boundaryf+ux for
the region.

At each iterationstep the exitingfluxes,due to the current estimate of the
lncldent fluxes, are to be determined. Precalculatedresponsematricesare used
only in the Monte Carlo regions. In the SN regions,the exiting fluxes are deter-
minedby numericallysolvingthe transportequation.

Precalculatedregponsematricesare not u~ed in the SN rgglonssince they wouid
increase both storage and computational requirements. Ccmpu~inga KxK response
matrixis K timesmore costlythan a singleboundaryvalueproblem. Since typical
values of K are much largerthan the requirednumberof interfacaflux iterations,
precalculatingresponsematricesfor the SN regions1s not advlgable.

The situation 13 quitedifferentfor the MonteCarloregions. By record!ngthe
initial(SN)state in additionto the final (SN) stateof each particle history, a
single Monte Carlo calculation can generatean entirereaponaematrixinsteadof
justan exit flux. As explainedin Ref. 1, sucha calculationrequiresroughly the
same computation time aa a single boundary valueproblemof comparableaccuracy,
(Theaccuracyof concernhere 1s not that of the individual response matrix ele-
ments, which will be relativelypoor,but ratherthatof the exit fluxescalculated
directlyand via the responsematrix.)

The hybrid method has baen implemented in a com~utercoie calledTliODANT/MC,
Thiswas done by addingMonteCarloand r~sponsematrixlinkagemodulesto T’AUDANT.’
Although the technique should be applicableto arbitrarygeometries,the present
tmt versionof TWUDANT/MC1s restrictedto mediaconsisting of tnroe r~ctangular
regions (see Fig. I). The top and bottomregions(whichneed not be homogeneous)
are analyzedusing ‘N, whilethe centerregion,includingthe boundaryla:’erzoneq,
lS treated with the MonteC:’.rlomethod. The interfacefluxesa? the top rindbot.t~m
et’the boundarylayers are determined iteratively usingthe responsematl’lxmetho~.

Several test problems havq been run with excellent results. The prlrlf:l;x]1
limitationJf the methodappearsto be the cumputermemoryavallablt~for storingthl+
MonteC.~rloresponsem,~trl!:os,
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Fig, L Geomotry for tho Tostlng of the Sri-Monte Carlo Link.

II. THEORY

:onsiderthe mediumdepictedin Fig. 1, consistingof one MonteCarloand two S,,
reglans. Supposethere are IL S

P
spatial mesh cells along each S lMonte C&rlg

!nterface. \Then,the interfacef uxe~ will be K-dimensionalvectorsu ere

(1)

and

!4= tRe totalnumberof angulardirectionsin a
two-dimensionalSy calculation. (2)

Let the.g~~xes ~ta~~e top interface be denoted by $~ut and ~~’”and thoge at the
bottom as vi and WI wherethe superscriptsrefer to dlretitionsin or out of the
NonteCarloregion, The transmissionmatricesTI and Ti and the reflectionmatrices
RI and Ra for the !lonceCarloregionare definedsuch that

‘4)



where 3~ut 3nd .?~ut,arethe flux of particles~~~twc)~~dleavethe top and bo’.:am
surfacesof the MontaCarloregionundervacuum($, m 92 - O) boundaryconditions.
These fluxesresul~from sourzes l~cated inside the Monte C?.rloregion.

Equations:3: and (4) can be solved iteratively:

+out(P+l)- * -jin(P) +in(P)
41 11 + T2W2 + i;ut ,

+out(P+l) +in(P)
‘2

■ R2i;n(p) , ,+Tti + .3;’Jt.

(5)

(6)

The matrices Tl, Ta, R,, and Ra and fluxesS,“outand ~~ut are calculatedonce using

MonteCarloand ther savedfor futureuse. +in(P)The fluxes$1 +in(P)and $2 are calcu-

lated at each iteration step using SN with the prescribedboundaryfluxes$1+Out(P)

+out(P)
&nd $2 .

A. Chcoslngthe SN and MonteCarloRegions

Threecriteriaare importantwhen decidingwhere to locate the SNIMonte Carlo
interfaces:

1, The SN regionsshouidbe comprisedof geometricallysimple and relatively
highly scattering materials go that the SNIDSA solver will be fagt and
accurate.

2. The Monte Carlo region Shouidbe as opticallythin as poagibleso that the
MonteCarlocalculationsdre reasonablyfast. It may also containlocalized
sourcesin pha~espaceor geometricallycomplexobjects.

3. Ine Monte Carlo/SN interfaces should be located where the flux is a slowly
varying function of angle and pogitlon, Thi~ 1s neededto minimizethe
numberof S statedneededto representthe interfacefluxes,thereby mini-
mizingthe lize of the reapon3ematrices.

B. The BoundaryLayers

Ii’it uere not for Item 3, above, ~he tdeal looatlonafor the S /MonteCarlo
interfaceswouldbe at the physical boundaries between high- and lo~-scatterinfl
regions, However, this could leadto very largere~poc~ematricessince the flux
near a low-scatteringregioncan be quite anisotropic. For this reaaon, we have
found it adviaable to locate the S /tlonteCarlo interfacesin highlyscattering

#regionsabout 1 mfp away from a regio of low scattering. I’hus, for best results,
the Monte Carlo region should be comprised of a zone of low-scatteringmaterial
sandwichedbetweenboundarylayers(aboutI-mfpthick)with large scattering cross
SOCtlOilSc

One obviousdrawbackin using the boundary layers is that they increase the
optical thickness of the Mont-eCarlo region and, therefore,Increasethe average
numberof collisionsper history. tlowever,it 1s our opinionthat the reduction in



tfie amount of storage needed for the responsematricesmore than compensates?or the
increasein Monte Carla computation time.

c. ImplementationintoT’dODANT

The implementation of thi9 method into the T’dODANTcode involves providing the
logic for the interfaceflux iteration as characterized by Eqs. (5) and (6), while
including subroutines to perform the Monte Carlo computation and to compute the
response matrices on the S

!l
spatial and Zngular !nesh. From the SN point of view,

the only difference between t e hybridmethodand the normalproblem-solvingprocess
1s the inclusion of interiorboundarysources. That is, the procedurewe use is to
set up the entireproblemas an SN problemwith the addition of interior boundary
conditions. In this way, the logicfor the solutionof the transportflux remains
the same (and,hence,the codingdoesn’tchange),and the DSM accelerator’ is also
unchanged. He, thus,retainthe powerand computationalefficiencyof the S solver
whilewe providea linkingwith the MonteCarloregion. ! pointThis is an importan
and grsatlyenhancesthe practicalityof this hybridmethod.

To illustratethe implementationof the interiorboundaryconditions, we refer
to Fig. II, which depicts a typicalSN spatialmesh. We indicatea direction~,
whichdefinesa $weeplngdlrectlon(downand in, in the caseshown). The sweeping
starts at the top and right boundar~eg and continues untilSurfaceso~tand4 are
encountered;the S valuesfor thesesurfacesare thenreplacedby the @

Y
given by

the MonteCarloca culatlon,and the normalsweepingresumes. A sirnilarmprocedure

/’ s2m

I

1

3 2

4

Fig. IL Typical Sn Mesh with lnterlor Boundarlm for MC Coupllng.



is followedf’orthe other three directions. This logicis readily implemented, =ni
vectorization of the sweepingalgorithmis retained. Thus, the speed of the normal
SN computation is retained. In the same way, the diffusion acceleration equaci~ns
retain their normalstructure;the only difference is the inclusion of the interior
boundarysaurces.

D. Acceleratingthe InterfaceFlux Iterations

AlthoughDSA acceleratesthe S calculations,
Y

it is not applicable to Eqs. (5)
and (6). To reducethe numberof nterfaceflux iterations,we use an extrapolation
procedure,b whichwe referto as the method of residual expansion functions. To
describethis technique,it wil!.be helpfulto expressthe interfaceflux iterations
by a singleequation. Formal}y,we czn expressthe SN calculationsas

Jin(P) - #N +out(P)
1 ,$1) (7)

and

+in(P)- #N +out(p)
‘2 ~w2J (8)

SNalthoughthe reflectionmatricesR, and R~N for the top and bottom SN regions are
not actuallydetermined.

Wing Eqs. (7) and (8), Eqs. (5) and (6) can be exwessed by the single equation

-plt(P+l) = B~Out(p)+ gout ,

where

[

91R~N T2R;N

B.

T,R~N 1SN ‘
‘2R2

+Out

[1‘1*out
*=

+0 ‘J t
1#2

o

and P 1s the iterationindex. The residual,

+(P) +out(P+l)r +out(P)
‘w -v o

(9)

(lo)

(11)

(12)



It follows ~rom Eqs. (9) and (13) that

(14)
~ ll-L

1-1

where

q“

af-

the eigenvalueof B with the i’th largestmagnitude,

the elgenvectorcorrespondingto Ai,

thepnumber of values of i for which ai~~ is not negligiblecomparedto
alA1,and

+(1)
the i’th coefficient in the expan9ion of r in termsof the ji.

Here we are assumingfor simplicitythat B ha9 a completeset of eigenvectors. He
Referto the conditiondefinedby approximation(14)as q’thordershapeconvergence
at iterationp.

It can be shownthat

q
+Out
w

+out(P+q+l)-
“+

x
~ ;(P+i+l)
1 B

ibl

where

md the 01 are obtainedfroma leaatsquaresfit to the equation

a

(15)

(16)

(17)

Exact equality holds in Eqs. (15) and (17) uhenover exact equality holds in
Eq. (14).

To predictthe converged9olutionvia Eq, (15)requiresa totalof

(18)



iterations. For any realistic problem, the relationship bet%een p and q is not
known apriori. Therefore, to implement the method, we fix a value for P (typiaal
choices are from 5 to 8) and then test different values of q in Eq. (17): beginning
withq= 1. The accuracy of the fit should improve until the correct value of q is
exceeded, at uhiah time the r esiduals on the right-hand side of Eq. (17) become
linearly dependent and the least squares problem becomessingular. Typical valties
of q rangefrom 1 to 5.

III. EXAM?LECALCULATIONS

In the following, we present two example calculationson systemsdesignedto
testthe accuracyand calculationalefficiency of this method. what we seek to test
is sensitivity to the SN quadrature used and the number of boundaryiterations
requiredfor an accurategoluticn. It is clear that the number of boundary flux
iterationsdepends upon the scattering ratio in the SN region;if c = O, then no
iteration~ are required; and for c = 1, we expect the number of iterations to be
maximum. Thus,referringto Fig. I, we set the scatteringratiofor the SN regions
to be unity(c - 1). In Gur test problems,we then vary the MonteCarloregionsize
and the so’urce.

For PrObleM 1 (referringto Fig. I),we prescribethe systemas follows:

1. Geometry(X-Y),10 cm x 25 cm.
The Y dimensionof each SN regionis 10 cm, and the Y dimensionof the Monte
Carloregionis 5 cm.

2* Material(homogeneous).
The total crosssectionsin the SN regionsis 1 cm-’and 1s 0.1 cm-’ in the
MonteCarloregion;Q u 0.1 in the MonteCarloregion.

3. The source is an isotropicpointsourcenormalizedto one particleat posi-
tion (X = 1.0,Y - 12.5),which is in the middleof the Monte Carlo region
nearthe left boundat’y.

4. SpatialMesh, 20 x 50 uniformspacing.

The Monte Carlo calculation starts 200,000 particles from the sourceand about
200,000fromthe regionboundariesto computethe sourcecontributionto the bound-
ary flux and the respons!ematricea,respectively.In the S calculation,we varied
the SN orderfrom N - 2 to N ■ 8. !!For the result~,we preset the leakage current
from each spatialcellat the right-handboundaryof the system. In order to judge
the accwacy of the results,we also performedbenchmarkingcalculationsusing MCNP5
to obtain the MorlteCarlo solution for the wholeproblemand also S-50 for an SN
benchmark,

In Fig. 111 we present the resultsof threecalculations;the benchmarkMCNP,
the benchmarkS-50,and the hybridSb/MC. We see quitegood agreementin all three
calculations for the leakage current; the greatest discrepancyoccurring10 the
“slot”or MonteCarloregion. In Fig. IV we expandth19 region and note that tha
MCNP and hybrid calculations agree verywell whilethe S-50 13 flatteracrossthe
slot . This flatnessarisesbecausewe must repregent a point source by a volume
gource in a m9sh cell; thus,the discrepancyis causedby the finiteextentof the
source. He alsonote thatthe solutionshouldbe symmetricabout Y - 12.5, but the
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fu?ct ion of 5oundary flux iteration [Eqs. (~) and (2): in Fig. ‘JII. tie p~te t,rac,
in obtaining these resuits, we have used the projecti~n method described in Ssc-
tion 11.2. For this exampls, it is seen chat the answer is ~onvergedby Izeraticn2
(~ = 2), whioh 19 good news indeed. To ascertain the effect af our projecting she
solution ac tne end of the iteration cycle, xe present iteration results in
Fig. VIII in xhi~h the solution is not pro.!ected. In this case, we require five
iterations to converge,~hich 13 a factor of 2.5 greater.

For our next example,we providea more stringent test of the method because of
a very tight coupllng between the ?egions. de pre9crlbe this system as follows
(again,refer co Fig. 1):

1. Geometry (X-Y), 20 cm M 21 cm.
The Y dimension of each SN regionis 10 cm and the Y dimensionof the Monte
Carloregion1s 1 cm.

2. Material(homogeneous).
Same as examplein Problem1,

39 Source.
Isotropic boundary source, normalized to one particle located at (X =
0.0,10.0= Y = 11.0),that is, locatedat the left-handboundary of the MC
region.

4. Spatial mesh.
20 M 42 uniform spacing.

Again,the MonteCarlocalculation starts 200,000 particles. Thus, in tnis
problem, we have a long,narrowslot surroundedby perfect9Catt0r~ng reg~OnS. To

obtain benchmark solutions, we performedan MCNP calculationand an S-1OO calcula-
tion of the system. In Fig. IX we presentthe MCNP calculation,an S-150calcula-
tion,and the hybridS-4/MonteCarlocalculationof the leakagecurrent. Again, as
in the first example, we see verygood agreementamong the solutionseven for this
moredifficultproblem. The value of the current at the slot is or particular
interest; this is the point at 10,5 cm on the plot. To see the sensitivityto a
normalSN calculation, we plot the results as a function of SN order in Fig.X. The
sensitivity at,the slot is quitestrong,whichi9 well known in normal S calcula-
tionsfor problems of this type. !!to ascertain the sensitivity of the hybr d method,

we show the same results from S2 to S,a in Fig. XI. mere 1s ❑ore sensitivity here
than in Example 1; but the results, even with S~, are quite acceptable. The maximum
difference in the slot current is 3.4$ fromS-12/MonteCarlo to S-41MonteCarlo,
while there is an enormous savlng9 in stGrage when using the very acceptable
S-U/Monte Carlo. As we did for Example1, we watchthe convergenceof the solution
to Example2 in the hybridS ItlonteCarlomode 15 the neighborhoodof the slot; the
resultsare shown in Fig. X14. Here,we noticechat the exit currentsconvergemore
slowly;but by five iterations (P-5) , we are well converged for our purposes.
Again, to see the effectof the projectionof the solution,we displayin Fig.XIII
the valuesof the currentas a functionof iterationwithoutthe projection. Com-
paring Figs. XII and XIII leadsus tc concludethat the projectionsavesbetweena
factor of 2 co 3 in the number of lcerationg required and, hence, !9 very
worthwhile.
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To show the advantageof ualnga b~undarylayer?eglonIn the Monte Carlo cal-
culation,we presentthe solutionas a functionof SN order in Fig. XIV. There,the
data labeledSN/MCO are from a calculationwithouta boundaryregion. We note the
Sensttiv!tyof the hybridsolutionto SN orderwhen no botindarylayeris used. Even
at S-12, the errorat the slot 13 -20$comparedwith the benchmark and the nybrld
meth~dwith the boundarylayer,
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VI. OBSERVATIONS AND CONCLUSIONS

From the results of the above examples, we ❑ake the folloulngobservations:

1. An accurateanswerfor relativelysimpleproblems1s obtainableby an itera-
tive linkingof MonteCarloand SN throughboundaryresponsematries.

2. The use of a boundary layer region 1s essential in obtaining results that
are relatively insensitive to the SN order used for the Sti regions.

3. The implementation of a Monte Carlo region into an SN code need not inter-
rupt the normal mesh-angle sweeping algorithm. Vectorizationfor this
algorithm is not inhibited, and diffusion aynthetir acceleration of the
tran9port iterations 19 as effective aa in the normalca~e.

l!, The SN/Monte Carlo boundary iteration proceduro conver@e3 well and 1s effec-
tively aided by the projection method described in Section 11.D.

These observation lead us to conclude that the SN/flonte Carlohybridmethod13 very
attractive for solving problems thatl~eithermethod,by itself,can do very effi-
ciently, It bring3 together the power cf both methodg in a systematic and con-
venient manner, In our implementation of this method, we have restricted it to
compute geometrically very simple systems. However, the Monte Carlo algorlthm Is
r~adily generalized,whichwill remo~e the geometric restriction in the Monte Carlo
region. Of cowse, the S regions still must be deacrlbed by either X-Y, R-Z, or

YR-0 geometries slnc: we a e in the TW2DANTcode, This code also restricts us to the
multlgroup approximation in energy, which reduces somewhat the power of the Monte
Larlo method. However, the main concern 1s the storage required for the res,jontie
matrices that go as the square of the number of spatial mesh points times angular
mesh points on the interface between the two regions, For example, if we a93ume we
have a maximum of 1,5 H 10’ words of memory fur response matrix ntor:~gol



then for a general problem with an asymmetric Monte Carloregion,‘weobtaintne
following permissible boundary spatial mesh as a function of SN order

a) S2,1L ■ 512,

b) S.,IL = 204,

c) Sa,IL ■ 102,

d) Sa,IL ■ 61,

where IL is the number of 9patial mesh intervals on the boundary. Thus,at So, we
are beginningto reachour limit For reasonablysized,realisticproblems.
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